Modified Mfcc Methods Based on Kl- Transform and Power Law for Robust Speech Recognition

نویسندگان

  • JOHN SAHAYA
  • RANI ALEX
  • NITHYA VENKATESAN
چکیده

This paper presents robust feature extraction techniques, called Mel Power Karhunen Loeve Transform Coefficients (MPKC), Mel Power Coefficients (MPC) for an isolated digit recognition. This hybrid method involves Stevens’ Power Law of Hearing and Karhunen Loeve(KL) Transform to improve noise robustness. We have evaluated the proposed methods on a Hidden Markov Model (HMM) based isolated digit recognition system with TIDIGITS data for clean speech and also with noisy speech data. An increase in the recognition accuracy rate is observed with the proposed methods compared to conventional Mel Frequency Cepstral Coefficients (MFCC) technique.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving the performance of MFCC for Persian robust speech recognition

The Mel Frequency cepstral coefficients are the most widely used feature in speech recognition but they are very sensitive to noise. In this paper to achieve a satisfactorily performance in Automatic Speech Recognition (ASR) applications we introduce a noise robust new set of MFCC vector estimated through following steps. First, spectral mean normalization is a pre-processing which applies to t...

متن کامل

Regularized MVDR spectrum estimation-based robust feature extractors for speech recognition

In this paper, we present two robust feature extractors that use a regularized minimum variance distortionless response (RMVDR) spectrum estimator instead of the discrete Fourier transform-based direct spectrum estimator, used in many front-ends including the conventional MFCC, for estimating the speech power spectrum. Direct spectrum estimators, e.g., single tapered periodogram, have high vari...

متن کامل

Speech Emotion Recognition Based on Power Normalized Cepstral Coefficients in Noisy Conditions

Automatic recognition of speech emotional states in noisy conditions has become an important research topic in the emotional speech recognition area, in recent years. This paper considers the recognition of emotional states via speech in real environments. For this task, we employ the power normalized cepstral coefficients (PNCC) in a speech emotion recognition system. We investigate its perfor...

متن کامل

Effectiveness of KL-transformation in spectral delta expansion

MFCC is widely used together with its delta and delta-delta features in the field of speech recognition based on HMM. MFCC is designed to apply DCT to the MF output. We propose in this paper to employ KL transformation instead of DCT, because it can reflect the statistics of speech data more precisely. MFCC is the compressed feature of the log MF so that some detailed features seem to be lost. ...

متن کامل

Feature extraction for robust speech recognition using a power-law nonlinearity and power-bias subtraction

This paper presents a new feature extraction algorithm called PNCC that is based on auditory. Major new features of PNCC processing include the use of a power-law nonlinearity that replaces the traditional log nonlinearity used in MFCC coefficients, and a novel algorithm to suppress background excitation using medium-duration power estimation based on the ratio of the arithmetic mean to the geo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014